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ABSTRACT

A new numerical method for computing sophisticated non-LTE model stellar atmospheres is presented. The
method, called the hybrid complete linearization/accelerated lambda iteration (CL/ALI) method, combines
advantages of both its constituents. Its rate of convergence is virtually as high as for the standard CL method,
while the computer time per iteration is almost as low as for the standard ALI method. The method is formu-
lated as the standard complete linearization, the only difference being that the radiation intensity at selected
frequency points is not explicitly linearized; instead, it is treated by means of the ALI approach. The scheme
offers a wide spectrum of options, ranging from the full CL to the full ALI method. We demonstrate that the
method works optimally if the majority of frequency points are treated in the ALI mode, while the radiation
intensity at a few (typically two to 30) frequency points is explicitly linearized. We show how this method can
be applied to calculate metal line-blanketed non-LTE model atmospheres, by using the idea of “superlevels”
and “superlines” introduced originally by Anderson (1989). We calculate several illustrative models taking
into .account several tens of thousand of lines of Fe m to Fe vi and show that the hybrid CL/ALI method
provides a robust method for calculating non-LTE line-blanketed model atmospheres for a wide range of stel-
lar parameters. The results for individiual stellar types will be presented in subsequent papers in this series.

Subject headings: methods: numerical — radiative transfer — stars: atmospheres — stars: early-type

1. INTRODUCTION

Non-LTE line blanketing may be called “the last problem of classical stellar atmospheres.” By a classical atmosphere we mean
here a plane-parallel, horizontally homogeneous atmosphere in radiative and hydrostatic equilibrium. LTE stands for local
thermodynamic equilibrium, and the term non-LTE loosely refers to any description allowing for some kind of departures from
LTE, although in practice one usually means that number densities (populations) of some selected energy levels of some selected
atoms and/or ions are allowed to depart from their LTE value. Finally, the term line blanketing encompasses a whole class of
approaches whose common aim is to study the influence of thousands to millions of spectral lines on the resulting atmospheric
structure and predicted emergent spectrum.

The problem of constructing line-blanketed model atmospheres is much easier assuming LTE, because the total line opacity is
then a function of only two variables, the temperature and the electron density, and is therefore determined locally. Nevertheless, the
very fact that we have to deal with millions of lines makes the problem nontrivial. One has to adopt some kind of statistical method.
Indeed, the LTE line-blanketing problem may be relatively easily solved by introducing the opacity distribution functions (ODF),
which represents a resampled total opacity in a given frequency interval. The effort in this area has culminated in a widely used grid
of LTE line-blanketed model atmosphere by Kurucz (1979). Recently, Kurucz (1992) has updated this grid by considering more than
10® spectral lines for a model construction. There are also other methods of computing LTE line-blanketed models, which are
generally based on some kind of Monte Carlo sampling of opacity in random frequencies (Peytremann 1974; Sneden, Johnson, &
Krupp 1976). For an excellent review, see Carbon (1984).

On the other hand, in non-LTE, the individual spectral lines are allowed to contribute not only to total opacity, but also, via their
radiative rates, to the global statistical equilibrium (i.e., determination of atomic level populations). Moreover, the lines of oné
species influence the radiative rates (mainly in bound-free transitions), and therefore the level populations, of other species. And,
finally, since the level populations no longer depend only on local conditions, but also, again through the radiative transitions, on
conditions in deeper layers, the problem is inherently nonlocal and highly nonlinear.

Do we really need to spend so much effort and computer resources to try to solve such an extremely difficult problem? One
obvious answer is that if for nothing else, the non-LTE line-blanketed models may serve to justify the applicability of LTE models.
But, more importantly, the experience gained from more than two decades of computing non-LTE model stellar atmospheres (for a
summary of the first decade, sce Mihalas 1978; the second decade is summarized, e.g., by Kudritzki & Hummer 1990; or in various
papers in the volume edited by Crivellari, Hubeny, & Hummer 1991) has amply demonstrated that non-LTE effects play an
important, even crucial, role in atmospheres of virtually all types of hot stars (effective temperature around 10,000 K and hotter).
Yet, neglecting line blanketing introduces an uncertainty in the results, which in some cases casts doubt about the usefulness of
non-LTE models in general. For instance, in the field of A and late-B stars, both main-sequence and chemically peculiar types, the
non-LTE unblanketed models were successful in explaining some features in the far-UV continuum and line profiles of some strong
lines (for a review, see Hubeny 1986), yet most workers in the field still keep using the Kurucz (1979) grid. The reason is that it is not
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a priori clear which is actually the greater evil—to neglect line blanketing or to neglect non-LTE effects. In many cases it appears
that it is line blanketing which is the more important feature to be considered in models. One may somehow estimate the effect of
neglecting it, but the only reliable solution to this dilemma is to produce non-LTE fully line-blanketed model atmospheres.

In the 1970s we have witnessed a period of rapid development of the field. The catalyst to the progress at this time was the method
of complete linearization (CL), introduced by Auer & Mihalas (1969). The underlying concept of model construction became the
realization that it is the (nonlocal) coupling of physical quantities (level populations, radiation field, temperature) which is the basic
physical ingredient necessary to understand a stellar atmosphere. The complete linearization technique became the tool which, for
the first time, actually allowed an explicit and fully consistent treatment of such a coupling. However, a high price had to be paid:
due to limitations of the computer resources, only a very limited number of atomic levels and opacity sources (lines) could be
treated. Since the computer time to run a model increases as a cube of the total number of unknowns, it soon became clear that
regardless of how rapidly computer technology may have progressed, dealing with millions of lines within this framework was
completely out of the question.

The 1980s witnessed a change in philosophy, namely a realization that not all varieties of coupling are equally important. In
general, it became clear that only the essential part of the coupling has to be treated explicitly; the rest could be treated iteratively. In
this respect, two concepts have been crucial for the further development. First, it was Anderson’s (1985, 1987) realization that it is
sufficient to group all frequency points into a small set of frequency blocks, rather than treating them separately. The method is
called the multifrequency/multigray algorithm. After rearranging the frequencies into the blocks, the structural equations are still
solved by complete linearization.

The second crucial point was the development of a whole class of approaches, generically referred to as accelerated lambda
iteration (ALI) methods. Although based conceptually on work by Cannon (1973a, b) and Rybicki (1972), the realization of the full
potential of ALI methods came only after the reformulation of these ideas by Scharmer (1982; for a complete review of this topic,
including historical considerations, see, e.g., Rybicki 1991, or Hubeny 1992). Its basis is to express the radiation intensity through an
approximate lambda operator acting on the source function plus a correction term known from the previous iteration. The
radiation intensity is thus effectively eliminated from the set of unknown variables (see also § 2). The ALI formalism was first applied
for constructing model stellar atmospheres by Werner (1986, 1987, 1989).

Although both above-mentioned methods represented a significant improvement over the previous approaches, they still could
not be used directly to compute fully blanketed models because the number of lines treated was still rather limited (of the order of
hundreds to thousands; and mostly lines of light elements like C, N, O). The limiting factor behind these approaches was that all the
energy levels were treated separately. This prevented them from treating atoms with a very complex energy level structure, such as
iron-peak elements. To solve this problem, Anderson (1989) introduced a statistical method, based on grouping many energy levels
into a small numbr of “superlevels,” and calculated the first truly blanketed non-LTE model atmospheres. Recently, Dreizler &
Werner (1992, 1993) incorporated Anderson’s idea into their ALI code and calculated several non-LTE line-blanketed model
atmospheres for very hot stars.

In this series of papers, we will develop another method for computing non-LTE line-blanketed model atmospheres and present
models for a wide range of stellar parameters. Is there a need for yet another method? In our opinion, the answer is definitely
positive, for several reasons. First, our method combines advantages of its two basic ingredients, CL and ALI, namely a fast
convergence rate (as in CL), and a short time per iteration (as in ALI). The most significant advantage of our method is that it allows
us to choose from a wide spectrum of options, ranging from the essentially classical CL as formulated by Auer & Mihalas, to a full
ALI code, as described by Werner (1987). We have found that somewhere between those two extremes the method works at its
optimum, truly combining the advantages of CL (globalness and fast convergence rate), with ALI (speed of computation). Our
computer program TLUSTY (Hubeny 1988; Hubeny & Lanz 1992) was modified to incorporate the present hybrid CL/ALI
scheme. However, from the user’s point of view, the corresponding changes are almost transparent.

Since line-blanketing non-LTE computer codes are enormously complicated (for instance, our program now contains more than
24,000 lines of code), it is virtually impossible to make sure that they are error free. Herein lies the second reason that an
independently developed approach is worthwhile. The only way to verify the results, and therefore to give more credence to
computed models, is to calculate models for the same stellar parameters, with the same species, levels, and transitions taken into
account, by two completely independent methods and computer codes. In fact, we have begun the project of explicit and detailed
comparison between the Kiel code (Dreizler & Werner 1993) and our code TLUSTY. The results of this study will be reported
elsewhere.

The method will be described in detail in § 2. In § 3 we describe our statistical treatment of complicated energy level structure of
iron-like species, and compare our approach to that of Anderson (1989) and Dreizler & Werner (1993). Some illustrative results are
presented in § 4, and a discussion of the accuracy and reliability of the method is presented in § 5. The present paper, the first one in
the series, concentrates mainly on a presentation and discussion of the method. The subsequent papers will be devoted to actual
model results for individual stellar types. The first two classes to be studied in detail are hot, metal-rich DA white dwarfs (Lanz &
Hubeny 1995, hereafter Paper II), and hot O subdwarfs.

2. THE HYBRID CL/ALI METHOD

2.1. Formulation
We begin with a brief summary of the classical complete linearization method. The classical stellar atmosphere problem, as
specified in § 1, consists of solving the radiative transfer equation for a selected set of frequency points, the hydrostatic equilibrium
equation, the radiative equilibrium equation, and the set of statistical equilibrium equations for chosen atomic energy levels. The set
is closed by the equations of charge and particle conservation, together with definition equations for opacities, etc. (see Mihalas 1978
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or Hubeny 1988). The equations are discretized in frequency and depth, which yields a set of highly coupled, nonlinear algebraic
equations.

The physical state of an atmosphere may then be fully described by a set of vectors i, for every depth pointd,d = 1,..., ND, ND
being the total number of depth points. The vector y, is given by

l//d={J1’~'-’JNFa Na T, nea n19-'~, nNL}a (1)

where J; is the mean intensity of radiation in the ith frequency point, N is the total particle number density, T is the temperature, n,
is the electron density, and n; is the number density (population) of level j; we have omitted the depth subscript d. The dimension of
vector Y, is NN, NN = NF + NL + 3, NF is the number of frequency points, and NL is number of atomic energy levels. Strictly
speaking, vector {/; should contain specific intensities of radiation, I(v;, ) (1, being discretized values of the directional cosines),
instead of mean intensities J(v;). However, thanks to the variable Eddington factor technique (Auer & Mihalas 1970), a simplified
form (eq. [1]) may be used.

The set of structural equations may be written formally as

P(x)=0, v

where x is a vector formed from all vectors Y, x = {{/y, ..., Ynp}; its dimension is therefore NN x ND.
The original complete linearization is nothing more than the Newton-Raphson method of solving equation (2), namely

x0T — ) _ J[x""] -1 P[x(")] , (3)

where J is the Jacobi matrix (Jacobian), J;; = dP,/0x;, i.c., the ij-clement of the Jacobian is the derivative of the ith equation with
respect to the jth unknown. Since the system (2) represents a finite difference solution of at most second-order differential equations
(i.e., the Feautrier form of the transfer equation—see, for example, Mihalas 1978), the Jacobian J has a particularly simple structure,
namely a block-tridiagonal form, and equation (2) is traditionally written (Mihalas 1978) as

—APSYP  + BYOUY — CPOYR, = L, @

which now also indicates the explicit dependence of the matrices on the iteration number n. Here A, B, C are NN x NN matrices,
and L’ = P,[x™] is the residuum vector (of dimension NN) at depth d.

Since the Jacobian is of a block-tridiagonal form, its inversion in equation (3) is not performed explicitly. Instead equation (3) is
solved by applying a block-Gaussian elimination procedure, so we are left with inverting only one NN x NN matrix per depth
point. Therefore, the total computer time for the ordinary complete linearization scales roughly as

Ny, X ND x NN3 | )

As discussed in detail by Hubeny & Lanz (1992), one may reduce the total time either by reducing the time per iteration, or by
reducing the number of iterations needed to achieve a certain accuracy, or both. They have suggested two methods for such a
reduction. The first is the so-called Kantorovich method, which consists of keeping the Jacobian fixed after a few iterations, so that
the costly matrix inversions are calculated only a few times. The second is an application of the so-called Ng acceleration, which
reduces the number of iterations by using information not only from the previous iteration step, but also from several previous
iterations. For a general review of these acceleration methods, see, e.g., Auer (1991).

In this paper, we will consider still another way of reducing the time per iteration, namely by reducing the size of the matrices to
be inverted. There are several ways to achieve this:

1. The simplest approach is to linearize only those quantities which are “essential,” while keeping the others fixed during
linearization and updating them during a subsequent formal solution. Such an idea was implemented in the original version of the
program TLUSTY. Specifically, this approach consists of keeping selected radiative transition rates “fixed.” These fixed rates are
calculated exactly in the formal solution step and are then held fixed during linearization. Subsequently, these rates are updated in
the next formal solution step (this treatment differs from what is usually meant as “fixed ” transitions by other authors, e.g., Auer,
Heasley, & Milkey 1972, or Carlsson 1986, where the fixed rates are inherently approximate). By “formal solution” we mean a
solution of one equation at a time, using current values of all other state parameters (for instance, solving the radiative transfer
equation for given frequency for current values of the level populations, temperature, and electron density). The fixed rates approach
has proved to be very useful for constructing model atmospheres with hundreds of atomic transitions taken into account, particu-
larly if used in conjunction with the acceleration methods (Hubeny & Lanz 1992), but if too many transitions are taken in this mode,
one basically recovers a lambda-iteration type of behavior, which is a serious drawback. In particular, the convergence rate is slow,
and the solution tends to stablize rather than truly converge.

2. A much more sophisticated way of reducing the size of matrices to be inverted is the already mentioned Anderson
multifrequency/multigray method. Basically, one substitutes

{Jl,---aJNF}—’{jl""ajNB}’ (6)

where J; represents a mean intensity characteristic of ith frequency block, and NB is the number of blocks. In order to achieve a
substantial reduction of time we have NB < NF. Each block groups together all frequencies for which the radiation is formed in a
similar way. It is not necessary that the block be composed of a continuous frequency interval (for instance, one block may represent
all wings of weak lines, etc.; see Anderson 1985). The essence of the method consists of selecting appropriate frequency bands and
the individual frequency points belonging to them. However, this is also a drawback of the method, since the bands have to be set
essentially by hand.
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3. In principle, the ALI method reduces the number of unknowns even more, because it eliminates all frequency points com-
pletely. This is achieved by expressing the mean intensity of radiation as

JP = A¥SY + (A, — ANSVY, )

where A, and A} are the exact and the approximate lambda operator, J, is the mean intensity of radiation, and S, is the source
function, all at frequency v. Superscript i indicates the iteration number. The mean intensity of radiation is thus represented by two
terms. The second one, the “correction ” term, is known from the previous iteration, while the first one represents an action of an
approximate (and, therefore, simple) operator, A*, on the source function, which is expressed as a function of temperature, density,
and atomic level populations. The radiative transfer equations are thus eliminated from the coupled system of structural equations.

Equation (7) is particularly useful if the approximate operator A* can be calculated easily. The real breakthrough was the
demonstration by Olson, Auer, & Buchler (1986) that a nearly optimum A* is simply a diagonal (or a simple multiband, like
tridiagonal) part of the exact A operator. Finally, Rybicki & Hummer (1991) showed that the diagonal part of the exact lambda
operator may be easily calculated within the framework of the Feautrier method. In the case of a diagonal (local) A*, the first term of
equation (7) is particularly simple—it is just a multiplication of the local source function by a real number. However, the basic
problem is that when equation (7) is substituted into the statistical equilibrium, hydrostatic equilibrium, and radiative equilibrium
equations, one still obtains a nonlinear system (see eq. [8]).

There are several ways to deal with such a nonlinearity. If one solves only the coupled radiative transfer + statistical equilibrium
equations (sometimes called a restricted non-LTE problem), one may in principle avoid linearization by using the idea of precondi-
tioning of the statistical equilibrium (Werner & Husfeld 1985; Herrero 1987; Rybicki & Hummer 1991, 1992), but it is not clear
whether this approach may be applied to the more complicated stellar atmosphere problem. Werner (1986, 1989) therefore used a
linearization approach. His approach solves the problem by using two nested iteration loops. The inner loop is a linearization loop
which solves the nonlinear set of equations for the number densities and the temperature, while the outer loop is the true ALI
iteration loop.

Here, we adopt a different approach. We divide all frequency points, chosen to represent accurately all lines and continua to be
included in the model, into two groups. The first one contains the “crucial ” frequency points (typically, a few frequencies near the
important continuum edges, and the centers of the strongest lines) to be treated explicitly, i.e., to be fully linearized. The rest of
frequency points comprise the so-called ALI points and are treated by means of the ALI formalism. This idea represents a significant
generalization and improvement of our previous “fixed ” frequency approach (Hubeny 1988). First, we use the ALI approach for
frequency points previously called “fixed ”, and therefore the radiation field in these points is not fixed but is allowed to change via
linearization of equation (7). Second, any transition, line or continuum, may generally be represented by a combination of explicit
and ALI frequency points. Our formalism thus allows a totally arbitrary choice of the frequency-point partitioning, ranging from
the fully ALI scheme (such as the Kiel code), to the original CL, where all points are explicit. As we will demonstrate numerically in
§ 4, the optimum choice lies between these two extremes. By choosing at least a few frequency points to be explicit, the time per
iteration will increase somewhat, but the number of iterations will decrease dramatically.

We stress that the inclusion of more ALI frequencies does not lead to a significant increase of computer time in the linearization
step. Obviously, the time for the formal solution increases with the number of frequency points considered, but the basic point is
that since only one transfer equation is solved at a time, the increase of computer time is linear in the number of frequency points
and not cubic as in the original CL.

2.2. Equations

In this paper, we will consider a diagonal A*. An extension to a tridiagonal A*, which is in principle straightforward, is underway,
and will be reported in a future paper. We rewrite equation (7) as (dropping the superscript indicating the iteration number)

Joa= At Lid 4 pJod @®)
Kj,d

where j denotes the frequency index and d denotes the depth index. A%, is simply a number. For numerical evaluation of A¥,, we use
here the procedure described by Rybicki & Hummer (1991), as well as the formulae of Olson & Kunasz (1987). We have found that
both choices generally yield the same convergence rate, although in some cases the Rybicki & Hummer operator is preferred.

The source function S; , is now written explicitly as the ratio of the emission coefficient ; ; over the absorption coefficient x; ;. In
the following, we shall use a notation « for the thermal absorption coefficient, and y for the total absorption coefficient, y; ; =
Kja + N, 40, With n, 0, being the electron scattering opacity; o, is the Thomson scattering cross section. In other words, the
approximate A* operator is defined through the thermal source function, not the total one. The second term on the right-hand side
of equation (8) expresses (A — A*)S as AJ°9, which is considered a known quantity and therefore is not linearized.

Equation (8) is linearized as follows:

5.]}',4 = A;’:d 6Sj,d = D}:d 57:1 + D;,ed (Sne‘d + Z D;",d 5nu Py (9)
where
s ax M (L Mg L O (10)
> P Kia M 0% Ky OX
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represents the derivative of the mean intensity in the “ ALI” frequency points with respect to temperature (for x = T), or electron
density (x = n,), or populations (x = n,),i.e., D}, = 0J; 4/0x,.

We stress that while A%, is fixed during the linearization, it is updated after each completed iteration step. If we use the Olson &
Kunasz formula, which expresses A¥, as an explicit function of monochromatic optical depth difference between the current depth
point and its two immediate neighbors, we may, in principle, linearize even A¥,. The work on implementing a linearization of A* is
underway and will be reported in a future paper.

2.2.1. Radiative Equilibrium
We write the radiative equilibrium equation in the form

an(vav - nv)dv] + ﬂ[r@ dv — iT:ﬁ] =0. 1)
0 0 Ty 4TC

Here v denotes frequency, f, is the Eddington factor, 7, is the monochromatic optical depth, ¢ is the Stefan-Boltzmann constant and
T, is the effective temperature. « and f are empirical parameters. The two terms of equation (11) are in fact two equivalent forms of
the radiative equilibrium equation (see, e.g., Mihalas 1978). The first one is the so-called integral form, expressing the fact that the
total radiation energy emitted in the whole frequency range is equal to the total radiation energy absorbed. The second term, called
the differential form, is the equivalent form expressing the constancy of total radiation flux with depth; the flux is expressed here
through the variable Eddington factor f, = K,/J,; K, being the second-order moment of the specific intensity. As discussed by
Hubeny (1988), the differential form is more accurate at large depths, while the integral form is preferable at small depths. The
previous versions of TLUSTY used for the radiative equilibrium the form (11), however with o and f given as a simple step function,
namely a; = 1 and B, = 0 for d < NDRE, while o; = 0 and , = 1 for d > NDRE, NDRE being an empirically chosen division
point. In other words, the radiative equilibrium was considered at any depth point either as the integral form or as the differential
form. We have found that a linear combination of both forms yields much better numerical stability and much higher accuracy of the
total flux. Coefficients « and B are still arbitrary, and their optimum choice is a matter of some experimentation. We have found,
however, that for virtually all stellar atmospheres the following choice provides good results, namely « = 1 everywhere but a few
(one to five) innermost depth points, while

0 > for TRoss < Taiv >

b {1 , elsewhere ’ (12)

with 14, & 1, Tz, being the Rosseland mean opacity. This means that for 7 > 74, , both forms are allowed to contribute equally,
which increases the accuracy and stability considerably. We have also experimented with other choices of « and S (as for instance
choosing « and B to yield both terms with a similar numerical value, or being specified as various functions of 7g,), but these were
not found to be significantly better than equation (12).

Equations (11) and (12) improve the accuracy of computed models regardless of whether one employs the traditional CL or any
other method. In case of the hybrid CL/ALI method, the linearization of equation (11) is as follows. We first rewrite equation (11) in
a discretized form, viz.,

NFEXP NFALI
7 Z Wi a(KiaJia — Mid) + Z w; K ad ;e — 'lj,d)]
J

i

NFEXP f J. - f 7. NFALI f J. ., — f 7. p
idYi,d i,d—1vi,d—1 j,dv j,d j,d—1vYj,d—1 _ 2 7a =
+ ﬁa( ; Wid Atya-rps + Xll Wi.d Ata-1r2 in Tge 0, (13)
where
1 Xi Xi,d— :
Aty 1= 5 (my — ma—x)("‘p'd + —p'd 1) ) (14)
d d-1

p being the density. In other words, each integral over frequency is replaced by two quadrature sums: one over the “explicit”
frequency points, and the second one over the “ ALI” points. We denote the former points with the subscript i and the latter with j.
The total number of these points is NFEXP and NFALI, respectively. Notice that the frequency quadrature weights w; and w; are
allowed to be depth dependent. This reflects the fact that allowing for a general depth-dependent absorption profile for lines
necessitates introducing depth-dependent quadrature weights, due to the requirement of preserving the exact numerical normal-
ization of the absorption profile at every depth.

The essential feature is that the radiation intensity in the ALI points is expressed by equation (8). We will not write this expanded
form of equation (13); we merely point out that the summation over the ALI points in the integral form part of equation (13) (the
second summation on the left-hand side) is written as

NFALI
Y Wil ATSS + (Afa— Dnyal s (15)

i

which in fact represents a preconditioning of the radiative equilibrium equation.
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Linearization of equation (13) is straightforward, though rather cuambersome. Let us denote the left-hand sidc of equation (13) as
R, . The linearized form then reads

NFEXP aR,, BR,, 6Rd BR,, NL SR NFEXP  5R
oJ; oT, + SN, + B —2 4
zi: aJ:d «* o, Ty «* aNd at on, 4 e Z on, Oma + Zi: 0Jj4-1 0 -1
OR,; OR, O0R, ML 5R,
oT,_ ==
+67}-1 a-1+ aN,_ laNa 1+a” 15”ea 1+Za” 15”1’4 1 Ry, (16)
where
m—“awmlﬁa"‘ﬁd“’.dﬁ 17)
and, for example,
AR NFEXP oK, 5'). NFALI 3% 4 M4
‘where
1 NFEXP f J. _f J Oy
EXP _ _ _ o Jiadia TS ia-1i,a-1 Xia O%i,a
'yT 2(md md—l) ; Wl,d (Ari_d—l/z)z Pd an 3 (19)
1 NFALL 1 E
ALl _ 2 _Wia o Jia—fiao1 g ) ————— 224
YT 2(’"4 my_y) ; At,q ml:, —jadja—fia-1Jja-1) paAT 0112 57}] (20)

Analogous expressions can be derived for other partial derivatives in equation (16), replacing the derivatives of the absorption
and emission coefficient with respect to temperature by the appropriate derivatives.

2.2.2. Hydrostatic Equilibrium Equation
The hydrostatic equilibrium equation reads

dpP

— =y, 21
=9 @y
where g is the surface gravity and P is the total pressure. The latter is given by
P=Pgas+Pturb+Prad’ (22)

i.e., as a sum of the gas, turbulent, and radiation pressure, respectively. All terms except the radiation pressure are linearized quite
analogously to the original CL (see Mihalas 1978; or Mihalas, Heasley, & Auer 1975, hereafter MHA). The radiation pressure is
written again as a sum of the “explicit ” and the “ ALI” contributions, viz.,

NFEXP NFALI

c
n Pq= Z Wiafiadia + Z w;afj, ( —bd AJ°'d> (23)
J Kj.a

i

Linearization of these equations is straightforward.

2.2.3. Statistical Equilibrium Equations

The same idea is also applied to the equations of statistical equilibrium. The equations are written formally as (Mihalas 1978,
p. 137-1495)

An=b, 24

where A is the rate matrix, n is the vector of populations, and b is the right-hand side vector. We are not interested here in the rows
of the rate matrix corresponding to the respective last equations for each individual species (the abundance definition equation, or
the charge or particle conservation equation). These rows do not depend explicitly on radiation, and therefore they are linearized in
exactly the same way as in the standard CL. The elements of the rate matrix corresponding to the true statistical equilibrium
equation are given by

=—Ru+Cyp, for i#j; A= z.(Rim + Cim) » (25)

where R;; and C;; are the radiative and collisional rates for the transition i — j, respectively. The radiative rates are given by
(assuming i < j)

4
R, = f;’v—‘ o, dv , (26)
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and
4n 2hv?
R; = J ™ a, (MG <? +J v) dv, 27
where o is the absorption cross section, and
9i/9; » for a line transition ;
Ay) = 28
Gi¥) {ne ®, exp (—hv/kT), for a continuum transition , @8
where g is the statistical weight and @ the Saha-Boltzmann factor.
After the original suggestion by Auer & Mihalas (1969), one does not linearize equation (24) directly; instead one linearizes
n—A"b=0. (29)
which yields
o4, (30)
o0x

This quantity represents the column of the Jacobi matrix corresponding to quantity x; x stands for any quantity of vector y defined
by equation (1). Here
0A ob
Ve=—n——.
=" ox
In the case of the standard CL, the corresponding expressions were given by MHA. Let the transition [ — u be represented by an

arbitrary combination of the “explicit” and “ ALI” frequency points; either subset is allowed be empty. Generally, the contribution
from this transition comes only to the two following components of vector V,, namely

Ry, + Cp) _ AR.+ C,) n

(€2))

(V) = =t gy — =t (32
and
V==V (33)
The radiative rate is written in a discretized form as
4y [NFEXP ; NFALI ;
Ry =2 7Y w5 TS, 34
i i J j

and analogously for the downward rate. The contribution from the collisional rates and from the “explicit ” frequency points is the
same as in the standard Cl, while the ALI contribution is given by

, 4n NFALL 6 (v)
(PRt eone™ = [m = m, Gulo)) 3 3wy =42 D} (35)
. J
where D7 is given by equation (10). The important difference from the standard complete linearization is that because the derivatives
D7 are generally nonzero for x being the individual level populations, the Jacobian contains contributions from the populations.
This of course expresses the already stated fact that within the ALI formalism the statistical equilibrium equations are no longer
linear in populations.

3. NON-LTE OPACITY DISTRIBUTION FUNCTIONS

3.1. Concept of Superlevels

The method described above improves considerably the treatment of transitions which are not fully linearized. Even very
complicated problems may now be easily solved by linearizing the radiation intensities in only a few frequency points in the most
important transitions, while treating the rest of frequency points by means of ALL. However, this approach is still not sufficient for
treating atoms with a very complicated energy level structure, as for instance the iron peak elements. Indeed, one would have to deal
with about 10*-10° energy levels, and consequently with 105-107 transitions, which is clearly beyond the capacity of even the most
powerful computers. Therefore, the only way of dealing with this situation is through some statistical approach. In the context of
non-LTE models atmospheres, such an approach was developed by Anderson (1989), and later used by Dreizler & Werner (1992,
1993) and, with a slightly different flavor, by Hubeny, Hummer, & Lanz (1994).

The idea consists of grouping several (many) individual energy levels together, forming the so-called superlevel. The basic physical
assumption is that all real levels j forming the superlevel J have a common non-LTE departure coefficient, or, in other words, all
components j are in Boltzmann equilibrium with respect to each other. There is a certain flexibility in choosing a particular
partitioning of individual levels into superlevels, but the choice is ultimately constrained by two opposing requirements: (1) the
energies of the individual components should be close; the levels should have similar physical properties (e.g., belonging to the same
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FiG. 1.—Superlevels (shown by boxes) and the corresponding superlines (shown by connecting lines) for our adopted models of various ions of iron: (a) Fe 1;
(b) Fe u1; (c) Fe 1v; (d) Fe v; (e) Fe vi. The ordinate represents the level energy in cm ™ *; the height of a box indicates the real spread of energies of the inividual energy
levels forming a given superlevel. The dot-dashed line near the top indicates the ionization energy of the given ion. The position on the x-axis does not have particular
meaning, except that we have arranged the superlevels into columns with alternating parity; the first, third, etc., columns are even levels; the second, fourth, etc.,
columns are odd levels. Also, the boxes are thatched by lines with a positive slope for the even levels, and by a negative slope for the odd levels. We stress that only
levels with measured energies (i.e., not predicted levels) are considered in the construction of superlevels

spectroscopic multiplet; having the same parity, etc.); and (2) there should not be too many superlevels, which would defeat the
purpose of the statistical approach.

Anderson (1989) and Dreizler & Werner (1993) have partitioned the true levels into the individual superlevels on the basis of the
level energies only, resulting in a rather small number, typically seven to eight, of superlevels per ionization degree. Although this
approach has the obvious advantage of keeping the total number of energy levels, and therefore equations to be solved, as small as
possible, there are several drawbacks:

(1) Since the energy widths of the superlevels are rather wide, the corresponding transitions between them span wide frequency
intervals. If the radiation is formed in disparate parts of the spectrum, its behavior may be quite different, which may violate the
equality of the b-factors for individual components.

(2) Since the approach does not distinguish between radiatively decaying and metastable states, the assumption of equal b-factors
of all components may again be questionable, for the lowest superlevels in particular.

(3) One has to consider radiative transitions between individual components of the same superlevel. Although not serious, this
feature may be inconvenient from the point of view of coding since one has to allow for radiative transitions from each superlevel to
itself.

Therefore, we have decided to base our partitioning scheme on the following criteria: (1) all levels within a superlevel have the
same parity; (2) energy differences between levels are small. The actual choice is made by inspecting the distribution of the individual
excitation energies for levels in the even and the odd parity system, looking for clustering of energies. We select typically 10-15
superlevels per system, which means about 20-30 superlevels per ion. For illustration, we present in Figures 1a—1le the superlines
and corresponding superlevels of several ions of iron, Fe 11 to Fe vi, which we feel represent reasonable starting models for these
ions. The detailed properties of the superlevels (parity, statistical weight, mean energy, and energy ranges are given in Tables 1-5 for
Fe 11 to Fe vi. These are the model atoms used in model atmosphere calculations reported here (§ 4). We plan to undertake a detailed
study of the sensitivity of resulting model atmospheres to various choices of superlevel partitioning; the results will be reported in a
future paper.

We stress that only levels with measured energies (i.e., not predicted levels) are considered in the construction of superlevels. An
inspection of Figures la—1e indicates that we will miss many high-energy levels. We treat these levels through the “upper sums”
calculated by means of the appropriate partition function, as described by Hubeny (1988, § 4.7). For the iron partition functions, we
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MoDEL ATOM FOR Fe 1v

TABLE 3

TABLE 1
MOoDEL ATOM FOR Fe 11
:g%l
! EI Emin Emax

B Parity g, em™)  (em Y  (m})

!

L Even 30. 416.3 0. 977.
2. Even 28. 2416.6 1873. 3117.
3. Even 20. 8320.5 7955. 8847.
4....... Even 12. 13612.4 13474. 13905.
Siinns Even 24. 16692.4 15845. 18887.
[ Even 200. 234323 20340. 27620.
Toeennen Even 96. 32115.7 30389. 33501.
8.t Even 22. 37196.4 36126. 38215.
[ Odd 30. 38709.8 38459. 39109.
10...... Odd 60. 424389 41968. 43621.
11...... Odd 60. 45224.7 44233, 47626.
12...... Even 24. 46159.6 44915. 48039.
13...... Even 40. 50043.6 49101. 50213.
14...... Odd 24 52671.4 52299. 52966.
15...... Even 106. 56624.9 54063. 60445.
16...... Odd 494, 63258.6 59663. 66672.
17...... Odd 106. 69535.9 67001. 71433.
18...... Odd 192. 732274 71965. 75915.
19...... Even 28. 73457.1 73394. 73637.
20...... Odd 54. 78469.0 76129. 79332
21...... Even 92. 79041.0 77231. 81735.
22...... Odd 28. 83778.7 83305. 84360.
23...... Even 250. 84714.7 82854. 88189.
24...... Odd 584. 90920.4 86389. 94190.
25...... Odd 246. 97542.1 94212. 101707.
26...... Even 122 99039.9 97507. 100750.
27...... Odd 528. 103431.3 102340. 105408.
28...... Even 950. 104626.3 101698. 107066.
29...... Even 382. 108973.7 107176. 110612.
30...... Odd 916. 109335.9 106120. 114104.
31...... Even 220. 114353.5 112397. 118277.

TABLE 2
MoDEL ATOM FOR Fe 111
El 'min max

I Parity g, em™)  (m™Y)  (m?)
1., Even 25. 4229 0. 1027.
2. Even 90. 21928.5 19405. 25142.
3. Even 50. 31176.5 30089. 35804.
4....... Even 12. 42106.5 41000. 42897.
Siinnn Even 30. 50180.5 49148, 50412.
6....... Even 9. 57221.7 57222. 57222.
Tvennn Even 112. 67029.5 63425. 70729.
8....... Even 63. 78311.2 73728. 79860.
[ Odd 36. 852974 82002. 89491.
10...... Even 218. 87755.5 82383. 93513.
11...... Even 25. 102560.0 97041. 105929.
12...... Even 41. 114549.0 109571. 117950.
13...... Odd 305. 117485.4 113584. 121950.
14...... Odd 272. 128726.7 122347. 132785.
15...... Odd 501. 138512.3 134265. 144117.
16...... Odd 134, 146621.6 144332, 151637.
17...... Even 72. 149284.3 147282. 151758.
18...... Odd 53. 158988.5 157684. 162085.
19...... Odd 144, 167214.4 165719. 170311.
20...... Even 451. 181941.1 179179. 186999.
21...... Odd 104. 185027.0 184181. 187090.
22...... Even 139. 190304.3 188013. 193611.
23...... Even 174. 199789.8 196881. 202429.
24...... Odd 457. 202148.5 198334. 207273.
25...... Even 147. 208441.0 207641. 210615.
26...... Odd 284. 218098.9 213458. 219781.
27...... Even 434, 222888.3 219740. 230257.

EI Emin Emax
I Parity 9 (em™Y) (em™)  (m™Y)
1....... Even 6. 0.0 0. 0.
2., Even 68. 34752.8 32246. 38938.
3. Even 78. 50281.6 47079. 52838.
4....... Even 56. 58283.9 56058. 66720.
Seeennn. Even 28. 79761.2 74097. 82897.
6....... Even 16. 105200.6 100118. 108258.
Teernnn Even 30. 128480.3 127766. 128968.
8.innn Even 20. 138399.2 137701. 138844.
9.enne. Even 162. 157563.1 153652. 162088.
10...... Even 94. 167475.2 164951. 171476.
11...... Even 24. 180607.3 177006. 183164.
12...... Odd 130. 192218.9 187879. 196847.
13...... Even 78. 194380.1 189975. 201212.
14...... Odd 20. 202379.8 201919. 202608.
15...... Odd 522. 218981.5 212136. 224871.
16...... Even 10. 222845.0 222841. 222852.
17...... Odd 246. 229974.5 226852. 234984.
18...... Odd 60. 241742.0 236919. 245742.
19...... Odd 130. 252025.4 246991. 254169.
20...... Odd 114. 261969.6 257503. 266335.
21...... Odd 30. 286203.1 280758. 289819.

TABLE 4
MODEL ATOM FOR Fe v

EI Emin max
1 Parity ¢, (em™) (m™")  (m™Y)
1....... Even 25. 787.2 0. 1283.
2., Even 90. 271589 24055. 30430.
3 Even 38. 37040.6 36586. 39633.
4....... Even 12. 50048.7 46291. 52733.
Senen. Even 30. 62324.5 61854. 63420.
6..cuu.n Even 9. 71280.3 71280. 71280.
T Even 5. 93832.3 93832. 93832.
8....... Even 1. 121130.2 121130. 121130.
[ Even 56. 190784.1 186434. 196839.
10...... Even 68. 210058.2 204730. 214611.
11...... Even 67. 217926.4 215783. 221305.
12...... Even 28. 234781.7 233634. 237730.
13...... Odd 120. 258674.5 254803. 261180.
14...... Even 20. 259551.8 258434. 262509.
15...... Odd 48. 265802.9 263899. 267929.
16...... Odd 227. 280439.8 273643. 285962.
17...... Odd 180. 289842.6 286155. 295973.
18...... Odd 84. 306781.8 302293. 311539.
19...... Odd 60. 332045.8 327534, 342462.

TABLE 5
MODEL ATOM FOR Fe vi

EI Emin me
1 Parity g, (cm™) (cm™)  (m™)
1....... Even 28. 1163.6 0. 2001.
2.n Even 30. 20299.7 18738. 21315.
3. Even 38. 28445.9 26215. 29203.
4....... Even 14. 46382.9 46217. 46604.
Seeninn Even 10. 71844.1 71708. 72049.
6....... Even 88. 276583.1 261841. 292330.
Taennnn Odd 126. 343351.5 338256. 350018.
8....... Odd 86. 361623.5 351806. 365494.
9....... Odd 52. 374135.0 370538. 379078.
10...... Odd 6. 409662.1 408207. 410390.
11...... Odd 102. 609822.2 575930. 635430.
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use tables of Sparks & Fischel (1971). To verify the reliability of this approach, we have set up extended model atoms with two
additional superlevels per ion, with one superlevel for each parity system, representing all the higher (predicted) levels. The data for
predicted levels were taken from Kurucz (1991). We have performed several test calculations and verified that the populations of the
two additional superlevels are consistent with the predictions based on the Sparks & Fischel partition functions.

3.2. Concept of Superlines

In the following we denote by lower-case letters i and j the genuine energy levels (eigenstates), while the superlevels are denoted by
upper-case letters I and J. We adopt the convention that the superlevel I is formed of several levels i. The population of superlevel I

is given by
n=Yn, (36)

where n; are populations of the individual components in the superlevel I. Other quantities describing a superlevel may be defined in
several ways. Our definitions differ slightly from those adopted by Anderson (1989) and Dreizler & Werner (1993). The reason is that
we are going to apply the occupation probability formalism, as described in Hubeny et al. (1994). The statistical weight of level I is
defined by

g1 = Z gi» 37

and therefore is a depth-independent quantity, in contrast to Anderson’s (1989) definition. The depth dependence, which arises due
to the fact that the energies of individual levels with a superlevel are not identical, is absorbed in our formalism within the superlevel
occupation probability, defined as

exp (E;/kT E;
W1=_p_(;;l/_'zzgiwi (2,99 (‘ﬁ), (38)

where the averaged energy is defined by

_ Zi giw: E; exp (= E/kT)
I_ Zi giw; exp (—E/kT) ~

The quantity w; is the occupation probability of level i, i.e., the probability that the atom in question is in state i relative to that in a
similar ensemble of noninteracting atoms. Correspondingly, (1 — w;) is the probability that the state i is dissolved. The standard
formalism is recovered by putting w; =1 for all states i. To avoid confusion we stress that in our formalism the superlevel
occupation probability w, is a formal quantity whose interpretation is not analogous to that of ordinary occupation probabilities.
As follows from equation (38), w; may be different from unity even if all w; = 1; in fact in order to recover w;, - 1 we need also
E; — E,for all i, i.e., all the energy levels forming a superlevel having energies which are close enough.

The most important quantities are the absorption and emission cross sections for the transitions between the individual
superlevels, i.e., the superlines. Generally, the true absorption coefficient in the transition I — J (i.., not corrected for stimulated
emission) is given by (see Hubeny et al. 1994)

E (39)

x1sv) = Z Z n;w; ai;(") > (40)

where g;{v) is the cross section for the (ordinary) transition i — j. We note that the line absorption cross section is given by
, ,

ne
o) = —— i) @41)
where f;; is the oscillator strength, and ¢,;(v) is the (normalized) absorption profile, given by
1 T, - v-~):| ’
i V)= H - Py = Py 42
=, [(41: Ao A @)

where H(a, v) is the Voigt function, v;; is the line center frequency, Avy, is the Doppler width, and I';; the damping parameter for the
transition i — j. Other quantities have their usual meanings.
Within the superlevel formalism, the absorption coefficient for transition I — J has to be expressed as

x1s(V) = nywyo(v) . 43)
Using equations (38), (40), and (43), we find that the absorption cross section has to be given by
gy exp (—E /kT) Zi Zj giwiw;0;{v) exp (—Ei/kT)

o, (v) = 44
10) = S gwr exp (— EJKTIILY, g, w, exp (— E/KT)] 44
Similarly, from the definition of the emission coefficient, viz.,
K AV
Y] nv) = Z': Ej: n; Wi(gj)a' i,{V) =n, WI(gJ)”n(V) s 45
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we obtain for the emission cross section

gs exp (—E/kT) Zi ZJ giw;w;o; exp (—E;/kT)

[Zi giW; €Xp (_Ei/kT)J[Zj gjw; exp (—E;/kT)]

E: The absorption and emission cross-sections are generally different. They would be equal if E; + E; = E; + E ;> ie, E; — E; =

-+ E; — E;, ie, if the frequencies of all transitions forming a superline are equal. Since we construct the superlevels to be composed of
levels of nearly equal energy, the approximation 6, 4(v) ~ o,(v) is usually well justified.

To complete our formalism, we give expressions for the photoionization cross sections from the superlevels and for the collisional
rates between superlevels. The photoionization cross section is given by

0, (1) = i *i0u) exp (—E/KT)
. Y.igiwi exp (—E/kT)

The collisional rates are given by expressions analogous to equations (44), (46) and (47), replacing o by C everywhere.

J. - T439. 87bH

]

(46)

65,(v) =

BA

@7

3.3. Numerical Treatment of the Superline Cross Sections
The absorption cross section as defined by equation (44) is a very complicated and highly nonmonotonic function of frequency.

‘To illustrate this, we plot in Figure 2 a typical cross section (transition 1 to 13 of Fe m1). The upper panel shows the actual cross
section, which was calculated using some 14,500 frequency points (the lower panel will be discussed later). Nevertheless, the actual
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form of the cross section does not matter. The only quantities which do matter are the corresponding integrals over the frequency

range covered by a superline; the integrals may represent for instance the radiative equilibrium integrand, x(v)J, — #(v), or the

integrand occurring in evaluating radiative rates (schematically) o(v)J, . This observation forms the basis of the statistical approach.
In order to facilitate the subsequent discussion, we write the integrals to be dealt with as

J" fOM,dv, (48)

(]

where v, and v, are the minimum and maximum frequency within a superline, and f(v) is a function of frequency which depends on
the particular integral under study; f(v) always contains the superline cross section a(v). The treatment of expression (48) is difficult
because there is another wildly varying function of frequency besides f(v), and that is J,. More accurately, J, is a smooth function of
frequency (i.e., the Planck function) deep in the atmosphere where the monochromatic optical depth z, > 1 for all frequencies, but J,
obviously reflects the frequency variation of o(v) for 7, < 1. Therefore, the numerical representation of expression (48) has to be able
to deal with the fact that the shape of J, varies significantly with depth. Likewise, the existence of two complicated functions with
correlated frequency dependence precludes the use of any mean value representation of expression (48) using a simple mean of the
cross section alone. In fact, the relevant mean value would be the absorption mean (Mihalas 1978), defined as

{ a(v)J, dv
[J,dv

which is however not useful because J, is not known a priori. Another complication arises if there is another important opacity
source in the interval (v, v,) (€.8., @ continuum edge, or another line/superline), so that J, reflects not only the variations of a(v), but
also another, independent frequency variation. We shall return to this point in § 3.4.

An obvious possibility is to evaluate the integrals (48) straightforwardly by choosing a sufficient number of frequency points to
represent all frequency variations of functions f(v) and a(v). However, this would require thousands of points per superline, which is
obviously out of the question. As discussed by Carbon (1984) in the context of LTE, or by Anderson (1989), in the context of
non-LTE, one may use either the idea of opacity distribution functions (ODF), or a Monte Carlo-like sampling of frequency points.
Both approaches suffer from certain drawbacks. The sampling technique generally requires a large number of frequency points,
because the line cores which represent the regions of largest opacity are relatively narrow. Considering too few frequency points may
easily lead to missing important line cores. Similarly, one may miss the regions of low opacity—the continuum “ windows ”, where in
fact most of the radiation flux is transported.

On the other hand, the idea of distribution functions is very attractive. The approach consists of resampling the cross section to
yield a monotonic function of frequency and to represent this (monotonic) function by a relatively small number of frequency points.
This procedure avoids all problems of missing opacities but suffers from another potentially serious problem of treating an overlap
of two different distribution functions (cf. Carbon 1984)—see below. The idea of ODF's was first used in the non-LTE context by
Anderson (1989), who nevertheless later (Anderson 1991) began to prefer the sampling technique. The sampling technique was also
employed by Dreizler & Werner (1992, 1993).

A construction of the ODF is illustrated on the lower panel of Figure 2. First, the detailed cross section (the upper panel) is
resampled to yield a monotonic function of frequency. For computational purposes, we are essentially free to choose whether this
function will be monotonically decreasing or increasing with frequency, or whether it will be taken to be stepwise monotonic. We
chose the following strategy: The peak of the ODF is placed at the position of the mean frequency of the individual superline
components, weighted by the cross section, i.e., ¥ = [ va(v)dv/{ a(v)dv. The ODF is then taken as a monotonically decreasing
function in the direction toward the strongest individual line of the superline. In the case of Figure 2 this happens to be the direction
of increasing wavelength (decreasing frequency). Once the real limit of the ODF is reached (i.e., 4 = 888 A in Fig. 2), the rest of the
original resampled function is continued on the opposite side of the peak. In practice, we also select a certain criterion specifying the
minimum value of the cross section considered ; we use the value 10~ of the maximum cross section (which is roughly analogous to
considering a “normal ” Doppler-broadened line from the core out to about 4 Doppler widths, which is a usual practice in model
atmosphere calculations). Finally, we display in Figure 2 the frequency points which represent this ODF in model calculations — 24
points in this case.

The superline cross section, and consequently the ODF, generally depends on the depth in the atmosphere, through the
dependence of the line broadening parameters on the temperature, density, and, to a lesser extent, on other state parameters. Instead
of computing the exact ODF for every depth, or using an interpolation between two limiting values as suggested by Anderson
(1989), we calculate the cross section and the ODF in three representative depths of the actual atmosphere; the first (surface) depth,
the estimated depth of formation, and the last depth point. To obtain reasonably accurate ODFs for all depths, we simply
interpolate (logarithmically) the set of representative ODFs in the depth indices. This procedure is quite adequate for the purposes of
model construction. We plot in Figure 3 the ODFs for the transition displayed in Figure 2, for all three representative depths. The
ODF remains almost unchanged between the surface (dashed line) and the approximate depth of formation (full line), while its shape
is quite similar for the deepest depth point (dot-dashed line). The interpolation should not therefore produce significant errors, and
even if so, the deep layers do not influence the formation of the spectrum because the monochromatic optical depth is already high.

From the general point of view, there are two basic problems connected with an application of ODFs. The first one concerns the
inherent limitations of the statistical representation of the superline cross section, and the second one concerns the treatment of the
superline overlaps.

The reliability of the distribution function representation rests on the following three assumptions. The first one, discussed in
detail by Carbon (1984), is that the individual steps of the ODF histogram (i.c., an ODF represented by a stepwise function) are

o-'=

(49)
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F1G. 3—The ODFs for the same transition as displayed in Fig. 2, for the three representative depths: the first (uppermost) depth point, dashed line; the
characteristic depth (the same as in Fig. 2), full line; the last (deepest) depth point, dot-dashed line

always identifiable with the opacity of particular frequency subintervals of the superline frequency range, at all depths in the
atmosphere. In other words, the general shape of the detailed cross section has to be similar in all depths. The worst situation occurs
if the cross section varies in such a way that a subinterval with high cross section at a certain depth becomes a subinterval with a
small cross section at another depth. This problem may arise in the case where an ODF contains contributions from various species
with different ionization degrees (such as in the traditional use of ODFs in LTE). Another important example is the treatment of
differentially moving atmospheres, where a given frequency which corresponds to a line core at certain depth may be Doppler-
shifted to correspond to a continuum window at a different depth. However, we consider here a static non-LTE atmosphere, and
our ODFs represent the opacity of transitions arising between energy levels of nearly the same energy and of the same ion; therefore
such problems never arise.

The second assumption is that if we construct the analogous distribution function for radiation intensity and represent it by the
same histogram steps as the original ODF, then the particular frequency subintervals corresponding to the individual histogram
steps must coincide with those corresponding to the cross section distribution function. In other words, both the cross section and
the radiation intensity must have the same statistical distribution. This condition is not satisfied, for instance, if the radiation in the
low—cross section part of the interval is both very low and very high; in other words, if the frequency variation of radiation field
reflects not only the cross section of the given superline, but also of some other important, strongly frequency-dependent, opacity
source.

The third, somewhat related, assumption is that the integrand f(v) in expression (48) can be expressed as f(v) = a(v)a(v) + b(v),
where a(v) and b(v) are smooth, nearly constant functions of frequency. However, both latter assumptions are never completely
satisfied in reality. The problem is essentially the question of how to treat various overlaps. Since this is a very important and
nontrivial problem, we will discuss it in detail in the next subsection.

3.4. The Problem of Overlapping Transitions

There are essentially three kinds of overlap which we will discuss in order of increasing complexity: (1) overlap of a superline with
a strong bound-free discontinuity (continuum edge); (2) overlap of a superline with an ordinary spectral line; (3) overlap of two (or
more) superlines.

1. Overlap of a superline with a continuum edge is very easy to deal with. It suffices to introduce two ODFs, instead of just one,
to represent the corresponding superline. The first ODF represents the resampled opacity in the frequency interval (vo, Veq4ge), While
the second one spans the range (Vegq. > V1); Veaqe i the frequency of the continuum edge.

2. Overlap of a superline with an ordinary line is treated similarly. All we have to do is to represent the profile of the ordinary line
by a histogram-like step function, and to construct an independent ODF for the individual frequency bins. The partitioning of the
line into bins may be very simple; in fact as few as three bins—the line core region, the near wing region, and the wing region—may
be adequate. We stress that in practice we do not have to use this procedure very often because the likelihood of significant overlap
of a strong line (like, for instance, the hydrogen Lya) and several strong metal lines is not very high. Overlap of weak individual lines
within a given superline system with a strong ordinary line may be neglected.

3. Overlap of two superlines is, in principle, the most difficult situation to handle. It would be possible to use the same procedure
as outlined above, i.e., to construct separate ODFs for an overlapped line for all frequency bins of the original superline ODF, but
this would lead to an impractical number of ODFs. In some cases, this procedure may prove necessary, as for instance for treating
the H 1and He 11 high series member overlaps, because every other He 11 line of series i — n (with i even) significantly overlaps with a
hydrogen line of series i/2 — n. We shall consider this problem in a future paper.
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F1G. 4—Histogram of distances between the individual “strong ” spectral lines (defined by 6, > 10~ 36'™*") of the two selected ions of iron: upper panel, results for
Fe 11; lower panel, results for Fe 1v; Thin line, all selected spectral lines are considered; heavy line, the spectral lines within the same superline are excluded. The

abscissa represents the distance between the lines measured in units of the characteristic Doppler width, which is calculated for T = 10,000 K for Fe 1, and
T = 30,000 K for Fe 1v. See the text and Table 6 for details

However, we claim that in most cases the overlap of superlines may be neglected. It should be clearly realized that although the
frequency regions of the individual ODFs very often overlap, the true lines within different superlines overlap only very rarely. To
demonstrate this point, we have analyzed the statistical distribution of distances between two neighboring lines, expressed in fiducial
Doppler widths, for all “strong” lines of all interesting ions of iron (Fe 1 to Fe vi). We select the “strong” lines as those having the
line-center cross section, g,, greater than a certain fraction of the maximum line-center cross section within the given ion, 67°*. We
use here a criterion g, > 107 3¢%**. The fiducial Doppler width is calculated for a typical temperature at which the given ion is
dominant. The results are presented in Figure 4 for two representative ions (Fe 11 and Fe 1v), and in Table 6 for all ions. Figure 4
shows a histogram of distances, and Table 6 displays the percentage of lines which overlap within 1 and 4 fiducial Doppler
widths. Only ~10% of lines overlap in the core (within 1 Doppler width); and typically 10%-20% of lines exhibit a core—near wing
overlap (within 4 Doppler widths). However, a sizable fraction of these overlaps may in fact be overlaps of lines belonging to the
same superline; and therefore such an overlap is treated essentially exactly by means of the ODF formalism. Figure 4 shows also the
histogram of line distances, where the lines within the same superline were excluded (thick lines); and Table 6 displays corresponding

TABLE 6
PERCENTAGE OF OVERLAPPING IRON LINES

OVERLAPS WITHIN

Av, 4 x Avy,
ToN N? 1° 2° 1° 2¢
Fem...o....oeel 1449 2.1% 0.6% 8.9% 3.7%
Feumr............... 1378 46 1.7 15.5 5.7
Ferv............... 765 8.0 2.4 23.7 6.9
Fev ....oocooooon. 716 7.5 2.8 23.3 114
Fevi.............. 359 22 22 10.0 5.0

 Number of strong lines selected by o}, > 107 3552%.
® Overlaps between all considered lines.
¢ Overlaps between lines in different superlines.
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percentages of lines that overlap within 1 and 4 fiducial Doppler widths. We see that indeed most of the overlaps are in fact overlaps
of lines within the same superline, so that a substantial fraction of the total line overlap is treated essentially exactly.

This exercise shows that it is a very good approximation to neglect the overlap of different ODFs entirely. In practice, this is
accomplished by selecting a set of frequency points describing all ODFs independently. Every superline has its own set of frequency
points, and the total opacity in these points is calculated as a total continuum opacity (plus possibly a binned ordinary line
opacity—see item [2]), and the opacity of the given superline. Although the frequency point distribution for several superlines may
intersperse, the superlines “ do not know about it ” (and do not care).

3.5. Frequency Quadratures

As explained above, introducing separate sets of frequency points for continua and all lines (ODFs) offers a more flexible, and in
fact physically more consistent, evaluation of opacity in the individual frequency points than simply sorting all frequencies in a
monotonically decreasing (increasing) sequence, and assuming that all opacity sources (particularly ODFs) contribute in all
frequencies. The drawback to our procedure is, however, that considerable care should be devoted to frequency integrations. In
particular, one has to make sure that by having separate frequency points for continua and lines one does not integrate twice over
the regions covered by lines. We use here a generalization of the procedure described by Hubeny (1988, § 5.2).

Let us evaluate an integral _[3" F(v)dv (function F may vanish for any subinterval). Let us further assume that function F is

_essentially “smooth ” for most of the total frequency range (continuum), while it exhibits a sharp variation in one or more narrow
‘frequency intervals (lines). We divide the frequency quadrature into three parts. First, we integrate over the “continuum points,”

which are selected to describe accurately the “continuum ” (including all continuum edges, but possibly also wide, e.g., hydrogen,
lines). Second, for each “line,” we have to subtract the partial integral of the “ continuum ” part of function F over the region covered
by the line. The third contribution is the numerical integration over the “line” frequency points. Denoting as IFRO(IT) and
IFRI(IT) the indices of the first and last frequency point within the line IT, we may express the general frequency quadrature as

] NFREQC NLINE IFRC1(IT) IFR1(IT)
f Fodv= Y Fyw,+ Y l:— Fwi*+ Y F (vi)wi] , (50)
0 i=1 IT=1 IFRCO(IT) IFRO(IT)

where NFREQC is the total number of continuum frequency points, w; are the original frequency quadrature weights, and NLINE
is the total number of lines, including superlines.

To evaluate the “subtraction integral "—the second term of equation (50)—we may use a simple procedure described by Hubeny
(1988), viz.,

Is“b = F(vlast)Avline H (51)

where v,,, is the last frequency point within the line (where the influence of the line is negligible) and Av,;, is the total frequency
range covered by the line. Equation (51) is a satisfactory approximation in the case of a narrow line. However, in the present case,
the lines, and particularly the superlines, may be rather wide, and the above approximation would be quite inaccurate. To evaluate
an improved subtraction integral, we first find all subintervals of the original “ continuum ” frequency quadrature which overlap the
frequency range of the given line IT. We denote the corresponding limiting indices as IFRCO(IT) and IFRCI(IT). The frequency
integration over continuum consists of a set of simple numerical quadratures, the trapezoidal or the Simpson integrations.
Integrating function F(v) in fact means to integrate analytically a set of polynomials P(v) of the first degree (in the case of trapezoidal
integration) or the second degree (in the case of Simpson integration), such as P(v;) = F(v,) for all continuum points v;. Thus, the
result depends only on values of F(v) in the continuum frequency quadrature points, and on the minimum and maximum frequency
points within the line. The subtraction integral is therefore given by

IFRC1(IT)

I = f P)dv= Y Fyws®, (52)
Av IFRCO(IT)

where the “subtraction” weights wi"® depend only on the continuum frequencies v;, i = IFRCIT), ..., IFRCI(IT), and the

minimum and maximum frequency within the line, v, and v,.

4. ILLUSTRATIVE MODEL CALCULATIONS

We will address two separate issues here. First, we will test the performance of the hybrid CL/ALI method. To this end, we choose
a relatively simple model which allows us to explore the whole range of options for the frequency point partitioning between the CL
and ALI method. Second, we will present two representative models with non-LTE line blanketing of iron, one for T ;; = 21,000 K ;
log g = 3.2, corresponding to an early B giant (in fact, this model represents our model atmosphere for e CMa—see Cassinelli et al.
1995), where blanketing by Fe 111 and Fe 1v lines is important, and the other for T, = 55,000 K; log g = 5.3, representing a typical
sdO star, where blanketing by Fe 1v, Fe v, and Fe v1 is most important. We do not present here models for A or late B stars where
the Fe 11 line blanketing is dominant because some illustrative model results were presented earlier (Hubeny & Lanz 1993a). Other
preliminary results obtained by the present method can be found in Lanz et al. (1992)—for relatively cool (T ~ 15,000 K)
metal-rich white dwarfs found in some cataclysmic variable systems; Heap et al. (1992)—for hot O subdwarfs; and Hubeny & Lanz
(1993b)—for hot, metal-rich white dwarfs.

4.1. Performance of the Hybrid Method

We have selected a H-He model atmosphere for T, = 25,000 K; log g = 4, N(He)/N(H) = 0.1, which represents an early B
main-sequence star. For hydrogen, the eight lowest levels are considered explicitly, while all the higher states are treated as a
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“merged level,” adopting an occupation probability treatment of their dissolution, as described in Hubeny et al. (1994). The
treatment of hydrogen is thus essentially exact. He 1is represented as a 15 level atom;; all Is-states up to n = 2 are treated as separate
levels; levels with n = 3, 4, 5 are treated by averaging separately the singlet and the triplet states, and the higher levels up ton = 8
are averaged over all Is-states within each n. H 1 and He 11 are represented by one-level ions. The continuum is represented by 79
frequency points, which provides a reasonably accurate numerical frequency quadrature.

The model atmosphere calculation proceeds, as usual, in three steps. First, an LTE model is calculated starting from an LTE-gray
model. The next step is a NLTE/C (continuum only) model, where all lines are assumed to be in detailed radiative balance. The final
step is a NLTE/L, where in addition some or all lines are considered explicitly. In some case, it is in fact possible to skip one of the
first two steps. For instance, it may be possible to proceed from the converged LTE model directly to NLTE/L; sometimes it is
easier to proceed from the LTE-gray model directly to NLTE/C, rather than to converge an LTE model (as, for instance, in the case
of heavily line-blanketed model). Nevertheless, in the present paper, we will consider the models calculated in all three steps.

All the following models were calculated on a DEC 3000/400 (Alpha) workstation running under a Unix-based operation system,
OSF/1. All timing comparisons reported here refer to runs of the program on this workstation.

4.1.1. LTE Models

The ALI method was not originally intended to be used in the context of LTE, but it is perfectly legitimate to do so. Although the
statistical equilibrium equations are replaced by the Saha-Boltzmann formulae, and therefore the level populations do not have to
be solved for, the remaining radiative and hydrostatic equilibrium equations still contain the unknown radiation intensity explicitly.
As a consequence, when applying the standard CL, where one explicitly linearizes the radiation intensity, computing LTE models is
roughly as time-consuming as computing NLTE/C models. To provide a fair performance test, which could be used to estimate the
computer time demands in actual model calculations, we employ our previously developed acceleration schemes (Hubeny & Lanz
1992), namely the Kantorovich and Ng acceleration. A model is declared converged if the maximum relative change of all quantities
at all depths, oy, , is less than 1073,

Table 7 summarizes the computed LTE models. Convergence properties of the individual models are presented in Figure Sa,
where the maximum relative change is plotted as a function of the iteration number. Model A represents the standard (accelerated)
complete linearization, where all frequency points are linearized. Ng acceleration is started at seventh iteration and performed every
four iterations, and the Kantorovich acceleration is started at the third iteration. Model B represents the opposite extreme, namely a
pure ALI scheme. We use the same setup for the Ng acceleration as before. If the Kantorovich acceleration is started after the third
iteration as for the standard CL, the convergence is relatively slow. However, when the Kantorovich acceleration is switched on
after eighth iteration (as was done in model B), the convergence is more uniform. We shall return to this point later. Model C
considers 10 frequencies as explicit, and the rest (69) as ALL The 10 explicit frequencies are chosen to be the first five points (with
lowest frequencies) in the Lyman and Balmer continua. Finally, model D considers only two points as explicit (the first two points in
the Lyman continuum). In both latter models, the Kantorovich acceleration is switched on after the fourth iteration.

The most interesting result is that considering as few as two points to be explicit (linearized) dramatically increases the con-
vergence rate (i.e., decreases the number of iterations to achieve a required accuracy) with respect to the standard ALI, while the
time per iteration remains virtually the same. This clearly shows the superior properties of the hybrid scheme over both the pure
ALI scheme and the pure CL method. We have verified that the resulting models are indeed well converged; for instance, the
maximum temperature difference between models A, B, C, and D was found to be about 0.7 K.

To display the favorable timing properties of the hybrid scheme, we plot in Figure 5b the maximum relative change as a function
of the total CPU time at the end of every iteration step (including formal solution). It is clearly seen that although the standard CL
has the highest convergence rate, the total time is much larger than for the other methods (a sharp turnover of the curve for model A
at the third iteration corresponds to the onset of Kantorovich acceleration). And, most importantly, the hybrid scheme (model D)
takes only about 60% of the computer time as for the full ALI scheme (model B). -

To study the effects of Ng and Kantorovich accelerations on the convergence properties of the full ALI scheme, we have
calculated several additional models, denoted B1, B2, B3, and B4—see Table 7 and Figure 6. Model B1 is identical to model B
discussed previously. Models B1 and B2 apply the Ng acceleration, started after the seventh iteration, and performed every four
iterations. The Kantorovich variant is started after the eighth and the third iteration for models B1 and B2, respectively. Analo-

TABLE 7
CHARACTERISTICS OF LTE MODELS

FREQUENCIES

_— START tepy

EXP ALI KANTOROVICH Nirer (s)
79 0 3 7 106
0 79 8 19 67
10 69 4 11 47
2 77 4 10 40
Bl ...... 0 79 8 15 64
B2 ...... 0 79 3 23 74
B3*...... 0 79 8 27 87
B4*...... 0 79 3 27 76

* No Ng acceleration.
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Fi1G. 5—Convergence properties of the individual LTE models for our standard test case atmosphere: a H-He model with T, = 25,000 K ; log g = 4 (see Table 7)
(a) The maximum relative change is plotted as a function of the iteration number; (b) The maximum relative change as a plotted as a function of the total CPU time
at the end of every iteration step (including formal solution). Model A, the standard (accelerated) complete linearization; model B, pure ALI scheme; model C, hybrid
scheme (10/69—i.e., 10 points explicit; 69 ALI); model D, hybrid scheme (2/77).
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Fi1G. 6.—Effect of the Kantorovich and Ng acceleration on convergence properties of LTE models calculated by the full ALI scheme (see Table 7). Model B1, Ng
acceleration (started at seventh iteration, performed every four iterations), Kantorovich acceleration (started at eighth iteration); Model B2, Ng (7/4); Kantorovich
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gously, models B3 and B4 do not apply Ng acceleration at all, while the Kantorovich variant is again switched on after the eighth
and third iteration, respectively. The maximum relative change to declare convergence was now decreased to oy, < 10™*. The
convergence of the ALI scheme without Ng acceleration is rather monotonic, but relatively slow. Ng acceleration provides much
better convergence; however, if the Kantorovich variant is switched on too soon (B2), the convergence is rather bumpy. This is
because the Jacobi matrix, being fixed after the third iteration, is still very far from the exact Jacobi matrix of the system (Hubeny &
Lanz 1992).

Finally, )we stress that the present case still does not show the advantage of the hybrid scheme in full, because the number of
frequency points we consider here is rather low. In more realistic and/or accurate models, where the number of frequency points in
the continuum has to be of the order of several hundreds, we always find the analogous behavior: When only a few frequency points
are linearized, the time per iteration is the same, but the convergence rate is much faster than in the case of pure ALI, and the total
computer time is orders of magnitude shorter than for the standard CL. This point is nicely illustrated in non-LTE models with
lines, considered in § 4.1.3.

4.12. NLTE/C Models

Again, we calculate four models, denoted A, B, C, D, analogous to the case of LTE (see Table 8). The results are very similar to
those for LTE models. Nevertheless, when we choose the same convergence criterion as for the LTE models, y,,,,, < 1073, we find
that the maximum temperature difference between models is about 11 K. This is certainly negligible for any astrophysical
application, but since we are exploring here the numerical properties of various schemes, we have to verify that all methods would
eventually converge to the same results. When we change the convergence criterion to dy,,,, < 10~ %, the maximum temperature
difference between resulting models decreases to about 2 K. The convergence properties and timing are displayed in Figures 7a and
7b, where we indicate the two convergence criteria by dotted horizontal lines.

Standard CL (model A) again converges very fast (in seven iterations). The full ALI scheme with the Kantorovich and Ng
accelerations (model B) converges at first rather quickly, but later slows down. The original criterion, 6y ,,,,, < 1073, was reached in
nine iterations, while it took another 10 iterations to decrease 6y, by an order of magnitude. The hybrid scheme (models C and D)
again provides a significant improvement. Using the original convergence criterion, model C (10 points explicit, 69 points ALI)
converges at even a greater rate than the standard CL according to the original criterion (in six iterations), and it needed only three
additional iterations to reach the more accurate convergence criterion. Nevertheless, the gain in total computer time is significant
(see Fig. 7b). Model D (two points explicit) now converges slightly slower than model C; the total time is only marginally longer for
the original convergence criterion (49 s as compared to 45 s for C), while the difference is larger (72 s vs. 54 s) for the more accurate
convergence criterion.

Finally, to show the full range of improvements of the complete linearization method developed here and in the previous paper
(Hubeny & Lanz 1992), we have calculated one more model, A0 (see Table 8), using the original (unaccelerated) CL. We plot the
timing in Figure 8. The plot dramatically shows the improvement of the original CL due to the Kantorovich acceleration (a sharp
turnover of curve A at the third iteration), which yields a factor of two of acceleration in this case and another substantial time gain
due to the hybrid scheme (model C).

4.1.3. NLTE/L Models

As explained above, we intend to test the whole possible range of frequency point partitioning. Therefore, we chose to calculate a
simplified model where all He 1 lines are kept in detailed radiative balance, while only hydgrogen lines are treated explicitly. The
model where all He 1 lines are also allowed explicitly would be easy to calculate by the hybrid scheme, but it would take an
impractically large computer time in case all frequency points are treated explicitly. In fact, such models (although still much more
complicated) are considered in § 4.2; a comparison to the standard CL would be meaningless because CL would require several tens
to hundreds hours of computer time. .

In the present models, we assume a depth-independent Doppler profile, with five frequency points per line. The line profile is
assumed symmetric about the line center so that only one half of the profile is considered; frequency points are spaced equidistantly
between the line center and the wing at four fiducial Doppler widths (defined as the Doppler width at T = 0.75 x T). All lines
between the first eight levels of hydrogen are considered, which gives 28 “normal” lines. Next, we consider two superlines which
represent the higher members of the Lyman and Balmer series, as described by Hubeny et al. (1994). The superlines are represented
by 14 and 16 frequency points, respectively. Altogether, we use 170 line frequency points, which results in a total of 249 frequency
points.

TABLE 8
CHARACTERISTICS OF NLTE/C MODELS

FREQUENCIES
_— START tepu
MoDEL EXP ALI KANTOROVICH Nirer (s)

A 79 0 3 7 122
B....... 0 79 4 19 97
C........ 10 69 4 8 54
D....... 2 7 4 13 72
AO...... 79 0 .. 7 234

2 No Kantorovich and Ng accelerations.
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F1G. 8—A comparison of the timing for NLTE/C models for the standard test case atmosphere. Model A0, unaccelerated CL; model A, accelerated CL; and
model C, the hybrid scheme. The plot is analogous to Fig. 7b and shows the dramatic improvement of the complete linearization method achieved in the last two
years
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TABLE 9
CHARACTERISTICS OF NLTE/L MODELS

FREQUENCIES

—_— START tepy
MOoDEL EXP ALI KANTOROVICH Nirer (s)
A 249 0 3 11 2658
B........ 0 249 4 40 384
C........ 4430 215 4 11 181
D........ 4+8 237 4 13 178
A0®...... 249 0 7 5307

2 No Kantorovich and Ng accelerations.

All models are calculated with the Ng acceleration started at the seventh iteration and performed every four iterations, and with
the Kantorovich variant started at the third iteration for model A, and the fourth iteration for other models. Model A again
represents the standard CL scheme. Model B is the full ALI scheme, and models C and D represent two setups of the hybrid scheme.
In both later models, we have selected four frequencies in the continuum as explicit (the first four points in the Lyman continuum).
Model C sets all points in the Lya, LyS, Lyy, Ha, HB, and Paa lines as explicit, while all points in the remaining 22 normal lines and
two superlines are ALI; model D takes only eight line frequency points as explicit, namely the two frequencies closest to the line core
for Lya, Lyf, Lyy, and Ha—see Table 9.

When the convergence criterion 6y,,,, < 10”2 was applied, the maximum temperature difference between model A and B was
about 20 K at log m ~ —2 (the continuum-forming layer), while it reached about 220 K at the surface. Again, although these
differences are likely of little practical consequence, we decided to choose a more stringent convergence criterion, 6y ,,, < 1074, to
study in detail the convergence properties of all adopted numerical procedures. Figures 9a and 9b show the convergence properties
and timing. As expected, the standard (accelerated) CL has a fast convergence rate, but the time per iteration is very large—any
variant of the hybrid scheme, including the full ALI, provides a fully converged model long before the first iteration of the CL method is
completed! When the lower accuracy convergence criterion was used, the full ALI scheme (model B) required only slightly more
computer time (about 20%-25%) than the models computed using the hybrid scheme (models C and D). However, to obtain the
converged model according to the higher accuracy criterion, the hybrid scheme required only about half of the computer time of the
full ALI scheme.

Again, to display the full range of improvement of the CL method, we have calculated model A0, as described in the previous
subsection, using the original (unaccelerated) CL. We plot the timing in Figure 10. The CPU time differences between the individual
methods are now so large that we have to use a logarithmic scale on the time axis! There is a factor of two improvement in timing
between the original CL (model A0) and the accelerated one (A); another factor of 7 between the accelerated CL and the original
ALI (model B), and finally factor of 2 between the pure ALI and the hybrid scheme (model D), so altogether we gain a factor of 30 of
acceleration!

Finally, we stress that the hybrid scheme is preferable to the full ALI method not only because it is faster, but also, and perhaps
more importantly, because it is significantly more accurate. We plot in Figure 11 the temperature difference between model A
(presumably “exact”), and the remaining models B, C, and D. While models C and D are now within 2 K from the exact model,
model B (full ALI) still exhibits a difference of about 40 K high in the atmosphere. Notice that this difference is significantly larger
than the “expected ” difference 10™*T, in virtue of the adopted convergence criterion, which would amount to about 2 K. The
reason is that ALI converges very slowly, so that small values of relative changes do not necessarily guarantee a fully converged
solution. We will return to this point in § 5, but the basic conclusion of this section is that the hybrid CL/ALI scheme appears to be
the most advantageous variant of the ALI method to be used for model atmosphere calculations.

4.2. Examples of Non-LTE Line-blanketed Model Atmospheres
- 42.1. AnEarly B Star: T, = 21,000 K;logg = 3.2

First, we calculate several model atmospheres for T, = 21,000 K; log g = 3.2—see Table 10. The atmosphere is assumed to be
composed of hydrogen, helium, and iron, with N(He)/N(H) = 0.1, and N(Fe)/N(H) = 2.5 x 1077 (i.e., the solar abundances). The
treatment of hydrogen and helium is exactly the same as for the models considered in the previous subsection, except that now we
also consider in certain models all the allowed transitions in He 1 between the levels with n up to n = 8. For iron, we consider four
ionization degrees; Fe 11 and Fe v are represented by one-level ions (Fe 11 is considered for completeness since in the temperature
minimum region its population is nonnegligible, while Fe v represents the highest ionization degree). As described above (§ 3.1;
Table 2), Fe 1 is represented by 27 superlevels and 191 superlines which in turn represent 23,059 genuine lines (all lines originating
between the levels with measured energies). Fe 1v is represented by 21 superlevels and 109 superlines, which similarly represent 7897
genuine lines.

Model 1 is a simple H-He NLTE/C model, i.e., a model where all lines are put in detailed radiative balance. Model 2 is a classical
H-He NLTE/L model, i.c., with all lines of hydrogen and He 1 considered explicitly. Models 3, 4, 5 include iron; model 3 considers
all lines of Fe 1v explicitly, but all other lines (i.e., of H, He, and Fe m) are in detailed radiative balance. Model 4 considers all lines of
Fe m1 and Fe 1v explicitly, but no lines of H and He. Finally, model 5 considers all lines of H, He 1, Fe 111, and Fe 1v. This last model is
calculated using 7777 frequency points; 735 in continua, and the rest in lines. Out of this number, 17 points in continuum and 28
points in lines were linearized. These numbers represent a conservative choice; it is quite possible that we could have chosen fewer
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F1G. 11.—Temperature difference (in K) between the NLTE/L model A (“exact”), and models B, C, and D displayed in Fig. 9. Notice that while model B
(computed by the ALI scheme) was declared converged, there is still a difference from the exact model of about 40 K at the surface. The models calculated by the
hybrid scheme (C and D) are both within 2 K from the exact model

points to be linearized, but since the model calculations are rather time-consuming, we did not make any effort to optimize the
choice at this stage.

Figure 12 displays the run of temperature versus the column mass for all five models. The temperature rise for log m < —2 for
model 2 is a classical non-LTE effect first discovered by Auer & Mihalas (1969) and is explained as an indirect effect of Balmer lines
on the heating rate in the Balmer continuum. The temperature decrease at log m < —4 represents the cooling effect of the hydrogen
Lyman lines and the He 1 resonance lines. When only the Fe 1v lines are allowed for, we obtain a mild backwarming effect (a
temperature increase for log m > —2), and an appreciable surface cooling. When also Fe 111 lines are allowed for, both effects are
considerably enhanced because Fe 11 provides much more line opacity than Fe 1v in this temperature range. Also, there are many
more lines of Fe 111 in the UV spectral range where the flux is maximum. When all lines are allowed for (model 5), the temperature is
much lower than for the H-He NLTE/L model (model 2) for log m < —2.5 (due to the surface cooling produced by iron lines), while
it is higher elsewhere (the backwarming effect). These results show that line blanketing is indeed very important in the atmospheres
of B stars. A more detailed discussion of the non-LTE model atmosphere, and a comparison to the observed spectrum of e CMa in
the EUV, UV, visible, and IR ranges is presented by Cassinelli et al. (1995).

Finally, we plot in Figure 13 the emergent flux for model 5 in the frequency points considered in the model construction. We stress
that this is not a synthetic spectrum; all these points are indeed fully considered in the linearization (explicitly or by means of ALI).

4.2.2. A Hot Subdwarf: T = 55000K;logg = 5.3

Next, we calculate several model atmospheres for T, = 55,000 K; log g = 5.3—see Table 11. The atmosphere is assumed to be
composed of hydrogen, helium, carbon, nitrogen, oxygen, and iron; with N(He)/N(H) = 1.5, N(C)/N(H) = 9.2 x 1073, N(N)/
N(H) = 6.3 x 1073, N(O)/N(H) = 1.7 x 10™%, and N(Fe)/N(H) = 1.2 x 10~*. This chemical composition and the basic parameters
roughly mimic a mildly helium-rich, hot O subdwarf, such as for instance BD + 75°325.

The treatment of hydrogen is the same as before. He 1 and He 11 are represented by one-level atoms; while He 11 is represented by
a 14-level ion. For carbon we consider explicitly one level for C 11, 12 levels for C 1v, and one level for C v. Similarly, for nitrogen, we
consider one level of N 11, six levels of N 1v, nine levels of N v, and one level of N v1. For oxygen, we consider a simplified model

TABLE 10

NUMBER OF NON-LTE LEVELS, LINES AND SUPERLINES, AND FREQUENCIES
INCLUDED IN THE MODEL ATMOSPHERES WITH
T = 21000 K, log g = 3.2

Non-LTE
LEVELS® LINEsS FREQUENCIES

Mope.  H, He Fe Model®  Actual® EXP  ALI  Total

1. 25 0 0 0 8 71 79
2. 25 0 90 232 45 1330 1375
3. 25 50 119 7917 29 2672 2701
4. 25 50 312 30976 29 6344 6373
S 25 50 402 31188 45 7732 7777

* Individual levels or superlevels (H 1 merged higher states, iron superlevels).
® Number of lines or superlines in the models; the number of genuine atomic
lines included in the models are given in the next column
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considered; model 4, H-He-Fe model, Fe 11 and Fe 1v lines considered ; model 5, H-He-Fe model, all lines (H, He, Fe m1, and Fe 1v) considered.
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synthetic spectrum; it displays the flux at the frequency points which were explicitly used in the model construction (7777 points altogether)

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1995ApJ...439..875H&db_key=AST

J. = 2439. [875HD

SAD

I'I_

MODEL ATMOSPHERES OF HOT STARS. L 899

TABLE 11

NuUMBER OF NON-LTE LEVELS, LINES AND SUPERLINES, AND FREQUENCIES INCLUDED
IN THE MODEL ATMOSPHERES WITH T, = 55,000 K, log g = 5.3*

NoN-LTE LEVELS LiNes FREQUENCIES

MOoDEL H, He C N, O Fe Model Actual EXP ALI Total

1. 26 0 0 0 0 9 636 645
2. 26 0 0 121 263 23 1479 1502
3. 26 39 0 165 307 25 1785 1810
4 ... 26 39 52 396 12974 25 6125 6150

? Columns are analogous to those in Table 10.

consisting of one level for O 11 and O 1v, five levels for O v, and one level for O vi. We stress that these simple models are chosen for
illustration purposes only; for a detailed spectroscopic study of hot subdwarfs, much more complete model atoms should be used.
Finally, four ionization stages of iron are considered. Fe 1v is treated as before (21 superlevels); Fe v is represented by 19 superlevels
and 82 superlines, which represent 3670 genuine lines; Fe v1 is represented by 11 superlevels and 31 superlines, which similarly
represent 1100 genuine lines. Fe vi1 is considered as a one-level ion.

We have calculated several model atmospheres with increasing number of lines considered—see Table 11. Model 1 is a simple
H-He NLTE/C model; i.e., no lines are considered. Model 2 is a classical H-He NLTE/L model where all hydrogen and He 11 lines
are considered. Model 3 considers in addition the C 1v lines, and model 4 includes all lines of H 1, He 11, C 1v, Fe 1v, Fe v, and Fe vi1.
The run of temperature for all models versus column mass is displayed in Figure 14. The effect of lines is similar to the previously
discussed case of an early B star. Again, the surface cooling due to the iron lines is appreciable; however, most of the cooling at
—4 < log m < —2 with respect to the H-He model is provided by the C 1v lines rather than by the iron lines. A similar conclusion
was also reached by Dreizler & Werner (1993), who have presented illustrative results for a similar effective temperature (although at
hlgher log g). Finally, we present in Figure 15 the non-LTE and LTE ionization balance of iron. We see that the non-LTE effects on
the iron ionization are important as pointed out by Dreizler & Werner (1993). This finding has profound 1mphcat10ns for the
interpretation of spectra. We shall return to this point in subsequent papers of this series, where we will study in detail models and
spectra of hot white dwarfs and hot O subdwarfs.
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F1G. 14—Plot of the temperature vs. column mass for various model atmospheres T, = 55,000 K; log g = 5.3 (a typical hot O subdwarf: see Table 11). Model 1,
simple H-He NLTE/C model (no lines considered); model 2, He-He NLTE/L model (all lines of H and He considered), model 3, H-He-CNO model, only H, He, and
C1v lines considered ; model 4, H-He-CNO-Fe model, all lines (H, He, C 1v, and Fe 1v to Fe vi) are considered
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F1G. 15—Non-LTE (upper panel) and LTE (lower panel) ionization balance of iron. The individual ionization fractions for four ions of iron, Fe3* to Fe®*, are
plotted as functions of the column mass. The non-LTE total number densities for the individual iron ions were calculated by summing all corresponding non-LTE
level populations together with LTE “upper sums” for model 4; the LTE ionization balance was calculated by the Saha equation for the structure of the H-He
NLTE/L model (model 2), which is what would the “classical ” non-LTE unblanketed model predict.

5. DISCUSSION

The hybrid CL/ALI method may be viewed as an improvement over both the complete linearization method, and the ALI
scheme.

Improvement over the original CL method is obvious. As was demonstrated in § 4.1, even a relatively simple NLTE/L model
requires much more computer time for completing one iteration of the standard CL than for the fully converged model calculated
with the hybrid scheme. However, this comparison is not entirely fair. It was long ago recognized that not all the frequency points
have to be linearized within the context of the CL method. This idea was applied consistently in the original versions of TLUSTY
(Hubeny 1988) where the notion of “fixed frequencies ” was fully utilized. We stress that, in the present terminology, the implemen-
tation of this idea is nothing else than a variant of the present hybrid scheme with all the “ ALI” frequency points considered as
“fixed” frequencies, with A* = 0. In other words, the fixed-frequency approach simply means that the radiation field in these
frequencies is treated by means of the classical lambda iteration. An obvious drawback to this approach is that it converges much
more slowly than the ALI scheme. To demonstrate this, we calculate a model analogous to NLTE/L model C (§ 4.1)—Figure 16. We
see that the convergence is indeed substantially faster when using the ALI treatment of previously “ fixed ” frequency points.

We now turn to discussion of the second point, namely how the hybrid scheme improves the original ALI method. Again, the
answer is obvious—the hybrid scheme increases the convergence rate considerably, while it keeps the time per iteration essentially
unchanged with respect to the standard ALL

The problems of slow convergence of ALI have been discussed by several authors. For instance, Pauldrach & Herrero (1988, their
Fig. 5) have suggested an improvement of the convergence properties by using a special preconditioning procedure, which uses
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model labeled “HYB ” treated the corresponding frequency points by means of the ALI approach. See the text for details

information not only from the previous iteration step, but also from one still earlier iteration. Another possibility for improving the
convergence rate is to apply a tridiagonal A* operator instead of a diagonal one (Werner 1988; Hillier 1990). This idea was
suggested originally by Olson & Kunasz (1987), who have demonstrated numerically that the use of tridiagonal operator speeds up
the convergence considerably. The explanation is easy—by using a tridiagonal operator, one allows for a depth coupling ot the
radiation intensities explicitly, while when using a diagonal (local) operator, depth coupling is treated only via the correction term
AJ°" (see equation [8]). This kind of behavior is present even in the simple so-called restricted non-LTE problem—a simultaneous
solution of the radiative transfer and statistical equilibrium equations, assuming the temperature and density are fixed. In the case of
stellar atmosphere models, the problem is more serious because the set of equations to be solved simultaneously includes also the
radiative and hydrostatic equilibrium equations. Hillier (1990) has presented an illuminating discussion of this problem. He has
shown that when invoking the diffusion approximation, which correctly describes the behavior of the radiation intensity at large
depths, we obtain

14d%S
3 di?’
which is explicitly nonlocal, and therefore is better approximated by a tridiagonal than a diagonal operator. The left-hand side of
equation (53) is in fact an integrand of the radiative equilibrium (RE) equation when written in the integral form (see equation [11]
and subsequent discussion). Therefore, when only the integral form of RE is used, the tridiagonal operator enhances the convergence
rate considerably.

However, the present hybrid CL/ALI scheme offers a different method of coping with the problem of depth coupling. Since the
radiation intensities at the most important frequencies are treated by linearizing-the exact transfer equation, the depth coupling in
these points is already treated fully self-consistently. Moreover, concerning the radiative equilibrium, we use here a combination of
the integral and the differential forms (eq. [11]), which is moreover dominated by the latter at large depths. Since the differential
form takes the depth coupling into account explicitly, even for the diagonal operator, the use of a tridiagonal operator is not so
crucial in the context of our scheme. Therefore, we do not expect that a tridiagonal operator will bring an essential improvement.
However, we are currently working on implementing a tridiagonal operator to our scheme, and the preliminary tests indeed verify
this hypothesis: while for the pure ALI scheme the tridiagonal operator yields a significantly better convergence, it does not result in
any significant improvement in the hybrid case. In fact, although the tridiagonal operator produces a converged solution in a
slightly smaller number of iterations, the time per iteration is appreciably larger (because of the extra time needed for setting up and
multiplying necessary matrices), so that the total time is larger. Nevertheless, we are still working on optimizing and debugging the
code; the final results may change these preliminary conclusions. The results will be presented in a future paper.

Besides the problem of depth coupling, there is another, and perhaps more important, problem connected with the application of
ALI to constructing model stellar atmospheres. When using complete linearization, both the radiation intensities, as well as the
optical depth scale, are explicitly linearized, and therefore allowed to change in a given linearization iteration. On the other hand,
the approximate A* operator, whether diagonal or tridiagonal, is evaluated on an optical depth scale corresponding to the current
iteration (i.e., with the “old ” populations) and is not allowed to change during the given linearization iteration. In other words, the
ALI scheme improves the situation over the classical lambda iteration (or, in the present context, over the idea of “fixed”
frequencies) by allowing the radiation field to vary during the linearization iteration (via expressing S through eq. [8] and linearizing
the source function), but it does not similarly allow one to vary the optical depth scale, which is in fact treated by means of the
classical lambda iteration (i.e., updated only after a completed linearization iteration step).

A possible solution of this problem is to explicitly linearize A* with respect to the monochromatic optical depth, which in turn is
easily linearizable with respect to the temperature, electron density, and populations. Another possibility is to employ the idea of an

-9~ (53)
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TABLE 12

DESCRIPTION OF THE MODELS CALCULATED WITH THE
EQUIVALENT TWO-LEVEL ATOM APPROACH AND
ACCELERATION PROCEDURES WITHIN THE

ALI SCHEME*
NG ACCELERATION
Model ETA Start Step
Bl...oooon. None 97 4
B2....o.oo... Hea, Lyy, LyB, Lya 97 4
B3...o........ None 7 4
B2........... Ha, Lyy, LyB, Lya 7 4

2 Models are analogous to NLTE/L models of Table 9.

approximate Newton-Raphson operator (Schonberg & Hempe 1986; Hillier 1990), which takes linearization of the optical depth
scale into account automatically. We are currently working on incorporating an explicit linearization of A* to our code.

A partial, but not very efficient, solution of this problem is to apply the idea of the equivalent-two-level atom (ETA) approach (see,
e.g., Mihalas 1978). It was shown by Hubeny (1988) that this approach significantly improves the convergence of the standard CL
method, because it provides a more consistent solution of the radiative transfer and statistical équilibrium equations between the
individual linearization iterations. As follows from the above discussion, such a procedure, applied for the most important
transitions, should also improve the convergence of the ALI scheme, because it replaces the lambda-iteration type treatment of the
monochromatic optical depth by the ETA treatment.

To study the effects of ETA applied between the individual iterations, in connection with various acceleration schemes, we have
calculated several models by applying the full ALI analogous to the NLTE/L model B from § 4.1.3 (i.e., non-LTE H-He model with
lines)—see Table 12 and Figures 17a and 17b. In all the following models, the Kantorovich acceleration is switched on after the
fourth iteration. Model B1 represents the “ pure” ALI scheme—no ETA procedure between iterations, and no Ng acceleration till
the 97th iteration, when we perform one to demonstrate its effect on an almost converged model. We see that it indeed has a
significant effect. Model B2 is analogous to B1 as far as the Ng acceleration is concerned but differs from it by performing the ETA
procedure for Ha, Lyy, Lyf, and Ly« (in this order), and repeating this series twice (i.e., altogether eight ETA procedures) after each
completed linearization iteration. Model B3 applies the Ng acceleration in our standard manner—started after the seventh iteration
and performed every four iterations; while it does not apply any ETA procedure. Model B4 employs the same Ng acceleration
strategy as B3, but applies the ETA procedure as in B2. We see that both, the Ng acceleration and the ETA procedure, individually
or together, improve the convergence of the pure ALI scheme. In particular, applying both of them simultaneously (model B4) yields
a relatively rapid convergence. It is noteworthy that unlike the experience of other workers (e.g., Werner 1988; Kubat 1994), who
have found the Ng acceleration not to be very helpful in the ALI model atmosphere codes, even leading is some cases to divergence,
in our experience the Ng acceleration either indeed accelerates, or at worst does not help very much, but never decelerates the
convergence.

The above notwithstanding, we do not consider the ETA approach to be the most efficient way to improve the convergence
properties of the full ALI scheme because, unlike the Ng acceleration, it is relatively time-consuming. To demonstrate this, we plot in
Figure 17b the timing for all models. Performing eight ETA procedures increases the time per iteration almost twice (for a pure ALI
method, the computer time is dominated by the formal solution). But these results indicate that any method which is capable of
providing a fast, self-consistent solution of the radiative transfer plus statistical equilibrium, keeping the temperature and electron
density fixed, may be used here. An example of such a method is another application of ALI, with a preconditioning of the statistical
equilibrium (Rybicki & Hummer 1991).

We stress, once again, that these strategies of dealing with convergence problems are most needed for the full ALI scheme. Our
newly developed hybrid CL/ALI method, accompanied by “low-cost” accelerations (Ng and, above all, Kantorovich) provides a
more attractive method than any variant of the full ALI treatment (compare Fig. 17b to Fig. 9b).

6. CONCLUSIONS

We have developed a new numerical method for computing sophisticated non-LTE model stellar atmospheres. The method
combines the advantages of its two basic constituents: its rate of convergence is practically as high as for the standard complete
linearization method, while the computer time per iteration is essentially as low as in the standard ALI method. We therefore call
this the hybrid CL/ALI method.

The method formally resembles the standard complete linearization; the only difference is that the radiation intensity at some (or
possibly all) frequency points is not linearized; instead, it is treated by means of the ALI approach. The choice of frequency point
partitioning is completely specified by the user and may range from the pure complete linearization to pure ALI method.

Compared to the standard, even accelerated, complete linearization, the gain in computer time is enormous, but more inter-
estingly, the hybrid method, with only a very small number of frequency points to be linearized, is both faster and more accurate
than the full ALI scheme. Essentially, the reason is that while the full ALI scheme treats the depth coupling of radiation intensities
iteratively (via the “correction” term of eq. [7]), the hybrid scheme considers the depth coupling in a few of the most important
frequency points explicitly. The very basis of the method is thus to select the “explicit ” points in the most efficient way. We have
demonstrated that a simple, but reasonable, strategy is to consider a few (two to four) frequencies in the most opaque parts of the
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FiG. 17.—Effect of the Ng acceleration and the equivalent-two-level-atom (ETA) procedures on the convergence properties of NLTE/L models calculated by the
full ALI scheme (see Table 12). Models are analogous to those displayed in Fig. 8 () The maximum relative change is plotted as a function of the iteration number;
(b) the maximum relative change is plotted as a function of the total CPU time at the end of every iteration step. Model B1, no Ng acceleration till the 97th iteration;
no ETA procedures. Model B2, no Ng acceleration till the 97th iteration; ETA procedures (see the text). Model B3, Ng acceleration (7/4); no ETA. Model B4, Ng
acceleration (7/4); ETA procedures. In all models, the Kantorovich acceleration is started at 4th iteration. Notice a significant effect of the Ng acceleration at the 97th
iteration for models B1 and B2

most important transitions as explicit. For instance, for the test calculations reported in § 4.1 we found that considering four
frequency points in the Lyman continuum, and two points per the first three Lyman lines and the first Balmer line, provides a nearly
optimum set of “explicit ” frequencies.

Finally, we have shown that this method can be applied to calculating fully line-blanketed non-LTE model atmospheres, by using
the idea of “ superlevels ” and “ superlines ” introduced originally by Anderson (1989). We have extended and generalized Anderson’s
approach by treating consistently the level dissolution by means of the non-LTE occupation probability treatment developed earlier
(Hubeny et al. 1994). We have further developed the concept of opacity distribution functions and have discussed at length the
various strategies to deal with the serious problem of the overlap of different distribution functions. Finally, we have calculated
several illustrative model atmospheres taking into account several tens of thousand of lines of Fe 1 to Fe vi in non-LTE. These
results demonstrated that the present hybrid CL/ALI method indeed provides a robust method for calculating non-LTE line-
blanketed model atmospheres for a wide range of stellar parameters. The results for individual stellar types will be presented in
forthcoming papers in this series.

We thank Bruce Altner for careful reading of the manuscript and for many useful suggestions. This work was supported in part by
NASA grants NAGW-3025 and NAGW-3834.
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